Наименование	Рабочая программа учебного курса «Химия» для обучающихся 10-11 классов СОО
программы	базовый уровень
Составитель	Учитель химии Смирнова Елена Васильевна, высшая квалификационная категория
программы	
Цель	• формирование системы химических знаний как важнейшей составляющей
реализации	естественно-научной картины мира, в основе которой лежат ключевые понятия,
программы	фундаментальные законы и теории химии, освоение языка науки, усвоение и
	понимание сущности доступных обобщений мировоззренческого характера,
	ознакомление с историей их развития и становления;
	• формирование и развитие представлений о научных методах познания веществ и химических реакций, необходимых для приобретения умений
	ориентироваться в мире веществ и химических явлений, имеющих место в
	природе, в практической и повседневной жизни;
	• развитие умений и способов деятельности, связанных с наблюдением и
	объяснением химического эксперимента, соблюдением правил безопасного
	обращения с веществами.
Место	Общее число часов, отведённых для изучения химии, на базовом уровне среднего
учебного	общего образования, составляет 68 часов: в 10 классе – 34 часа (1 час в неделю),
предмета в	в 11 классе – 34 часа (1 час в неделю).
учебном	
плане	
Содержание	10 КЛАСС
программы	
	ОРГАНИЧЕСКАЯ ХИМИЯ
	Теоретические основы органической химии
	Предмет органической химии: её возникновение, развитие и значение в
	получении новых веществ и материалов. Теория строения органических
	соединений А. М. Бутлерова, её основные положения. Структурные
	формулы органических веществ. Гомология, изомерия. Химическая
	связь в органических соединениях – одинарные и кратные связи.
	Представление о классификации органических веществ. Номенклатура
	органических соединений (систематическая) и тривиальные названия
	важнейших представителей классов органических веществ.
	Экспериментальные методы изучения веществ и их превращений:
	ознакомление с образцами органических веществ и материалами на их
	основе, моделирование молекул органических веществ, наблюдение и
	описание демонстрационных опытов по превращению органических
	веществ при нагревании (плавление, обугливание и горение).
	Углеводороды
	Алканы: состав и строение, гомологический ряд. Метан и этан –
	простейшие представители алканов: физические и химические свойства
	(реакции замещения и горения), нахождение в природе, получение и
	применение.
	Алкены: состав и строение, гомологический ряд. Этилен и пропилен –
	простейшие представители алкенов: физические и химические свойства
	(реакции гидрирования, галогенирования, гидратации, окисления и
	полимеризации), получение и применение.
	Алкадиены: бутадиен-1,3 и метилбутадиен-1,3: строение, важнейшие
	химические свойства (реакция полимеризации). Получение
	синтетического каучука и резины.
	Алкины: состав и особенности строения, гомологический ряд. Ацетилен
	 простейший представитель алкинов: состав, строение, физические и
	химические свойства (реакции гидрирования, галогенирования,
	гидратации, горения), получение и применение.
	Арены. Бензол: состав, строение, физические и химические свойства
	(реакции галогенирования и нитрования), получение и применение.
	Толуол: состав, строение, физические и химические свойства (реакции

галогенирования и нитрования), получение и применение. Токсичность аренов. Генетическая связь между углеводородами, принадлежащими к различным классам.

Природные источники углеводородов. Природный газ и попутные нефтяные газы. Нефть и её происхождение. Способы переработки нефти: перегонка, крекинг (термический, каталитический), пиролиз. Продукты переработки нефти, их применение в промышленности и в быту. Каменный уголь и продукты его переработки.

Экспериментальные методы изучения веществ и их превращений: ознакомление с образцами пластмасс, каучуков и резины, коллекции «Нефть» и «Уголь», моделирование молекул углеводородов и галогенопроизводных, проведение практической работы: получение этилена и изучение его свойств.

Расчётные задачи.

Вычисления по уравнению химической реакции (массы, объёма, количества исходного вещества или продукта реакции по известным массе, объёму, количеству одного из исходных веществ или продуктов реакции).

Кислородсодержащие органические соединения

Предельные одноатомные спирты. Метанол и этанол: строение, физические и химические свойства (реакции с активными металлами, галогеноводородами, горение), применение. Водородные связи между молекулами спиртов. Действие метанола и этанола на организм человека.

Многоатомные спирты. Этиленгликоль и глицерин: строение, физические и химические свойства (взаимодействие со щелочными металлами, качественная реакция на многоатомные спирты). Действие на организм человека. Применение глицерина и этиленгликоля.

Фенол: строение молекулы, физические и химические свойства.

Токсичность фенола. Применение фенола.

Альдегиды и кетоны. Формальдегид, ацетальдегид: строение, физические и химические свойства (реакции окисления и восстановления, качественные реакции), получение и применение. Одноосновные предельные карбоновые кислоты. Муравьиная и уксусная кислоты: строение, физические и химические свойства (свойства, общие для класса кислот, реакция этерификации), получение и применение. Стеариновая и олеиновая кислоты как представители высших карбоновых кислот. Мыла как соли высших карбоновых кислот, их моющее действие.

Сложные эфиры как производные карбоновых кислот. Гидролиз сложных эфиров. Жиры. Гидролиз жиров. Применение жиров. Биологическая роль жиров.

Углеводы: состав, классификация углеводов (моно-, ди- и полисахариды). Глюкоза — простейший моносахарид: особенности строения молекулы, физические и химические свойства (взаимодействие с гидроксидом меди(II), окисление аммиачным раствором оксида серебра(I), восстановление, брожение глюкозы), нахождение в природе, применение, биологическая роль. Фотосинтез. Фруктоза как изомер глюкозы.

Крахмал и целлюлоза как природные полимеры. Строение крахмала и целлюлозы. Физические и химические свойства крахмала (гидролиз, качественная реакция с иодом).

Экспериментальные методы изучения веществ и их превращений: проведение, наблюдение и описание демонстрационных опытов: горение спиртов, качественные реакции одноатомных спиртов (окисление этанола оксидом меди(II)), многоатомных спиртов (взаимодействие глицерина с гидроксидом меди(II)), альдегидов (окисление аммиачным

раствором оксида серебра(I) и гидроксидом меди(II), взаимодействие крахмала с иодом), проведение практической работы: свойства раствора уксусной кислоты.

Расчётные задачи.

Вычисления по уравнению химической реакции (массы, объёма, количества исходного вещества или продукта реакции по известным массе, объёму, количеству одного из исходных веществ или продуктов реакции).

Азотсодержащие органические соединения.

Аминокислоты как амфотерные органические соединения. Физические и химические свойства аминокислот (на примере глицина). Биологическое значение аминокислот. Пептилы.

Белки как природные высокомолекулярные соединения. Первичная, вторичная и третичная структура белков. Химические свойства белков: гидролиз, денатурация, качественные реакции на белки.

Экспериментальные методы изучения веществ и их превращений: наблюдение и описание демонстрационных опытов: денатурация белков при нагревании, цветные реакции белков.

Высокомолекулярные соединения

Основные понятия химии высокомолекулярных соединений: мономер, полимер, структурное звено, степень полимеризации, средняя молекулярная масса. Основные методы синтеза высокомолекулярных соединений — полимеризация и поликонденсация.

Экспериментальные методы изучения веществ и их превращений: ознакомление с образцами природных и искусственных волокон, пластмасс, каучуков.

Межпредметные связи.

Реализация межпредметных связей при изучении органической химии в 10 классе осуществляется через использование как общих естественно-научных понятий, так и понятий, являющихся системными для отдельных предметов естественно-научного цикла.

Общие естественно-научные понятия: явление, научный факт, гипотеза, закон, теория, анализ, синтез, классификация, периодичность, наблюдение, измерение, эксперимент, моделирование.

Физика: материя, энергия, масса, атом, электрон, молекула, энергетический уровень, вещество, тело, объём, агрегатное состояние вещества, физические величины и единицы их измерения.

Биология: клетка, организм, биосфера, обмен веществ в организме, фотосинтез, биологически активные вещества (белки, углеводы, жиры, ферменты).

География: минералы, горные породы, полезные ископаемые, топливо, ресурсы.

Технология: пищевые продукты, основы рационального питания, моющие средства, лекарственные и косметические препараты, материалы из искусственных и синтетических волокон.

11 КЛАСС

ОБЩАЯ И НЕОРГАНИЧЕСКАЯ ХИМИЯ

Теоретические основы химии

Химический элемент. Атом. Ядро атома, изотопы. Электронная оболочка. Энергетические уровни, подуровни. Атомные орбитали, s-, p-, d- элементы. Особенности распределения электронов по орбиталям в атомах элементов первых четырёх периодов. Электронная конфигурация атомов.

Периодический закон и Периодическая система химических элементов

Д. И. Менделеева. Связь периодического закона и Периодической системы химических элементов Д. И. Менделеева с современной теорией строения атомов. Закономерности изменения свойств химических элементов и образуемых ими простых и сложных веществ по группам и периодам. Значение периодического закона в развитии науки. Строение вещества. Химическая связь. Виды химической связи (ковалентная неполярная и полярная, ионная, металлическая). Механизмы образования ковалентной химической связи (обменный и донорно-акцепторный). Водородная связь. Валентность. Электроотрицательность. Степень окисления. Ионы: катионы и анионы. Вещества молекулярного и немолекулярного строения. Закон постоянства состава вещества. Типы кристаллических решёток. Зависимость свойства веществ от типа кристаллической решётки. Понятие о дисперсных системах. Истинные и коллоидные растворы. Массовая доля вещества в растворе.

Классификация неорганических соединений. Номенклатура неорганических веществ. Генетическая связь неорганических веществ, принадлежащих к различным классам.

Химическая реакция. Классификация химических реакций в неорганической и органической химии. Закон сохранения массы веществ, закон сохранения и превращения энергии при химических реакциях.

Скорость реакции, её зависимость от различных факторов. Обратимые реакции. Химическое равновесие. Факторы, влияющие на состояние химического равновесия. Принцип Ле Шателье.

Электролитическая диссоциация. Сильные и слабые электролиты. Среда водных растворов веществ: кислая, нейтральная, щелочная.

Окислительно-восстановительные реакции.

Экспериментальные методы изучения веществ и их превращений: демонстрация таблиц «Периодическая система химических элементов Д. И. Менделеева», изучение моделей кристаллических решёток, наблюдение и описание демонстрационных и лабораторных опытов (разложение пероксида водорода в присутствии катализатора, определение среды растворов веществ с помощью универсального индикатора, реакции ионного обмена), проведение практической работы «Влияние различных факторов на скорость химической реакции». Расчётные задачи.

Расчёты по уравнениям химических реакций, в том числе термохимические расчёты, расчёты с использованием понятия «массовая доля вещества».

Неорганическая химия

Неметаллы. Положение неметаллов в Периодической системе химических элементов Д. И. Менделеева и особенности строения атомов. Физические свойства неметаллов. Аллотропия неметаллов (на примере кислорода, серы, фосфора и углерода).

Химические свойства важнейших неметаллов (галогенов, серы, азота, фосфора, углерода и кремния) и их соединений (оксидов, кислородсодержащих кислот, водородных соединений).

Применение важнейших неметаллов и их соединений.

Металлы. Положение металлов в Периодической системе химических элементов Д. И. Менделеева. Особенности строения электронных оболочек атомов металлов. Общие физические свойства металлов. Сплавы металлов. Электрохимический ряд напряжений металлов. Химические свойства важнейших металлов (натрий, калий, кальций, магний, алюминий, цинк, хром, железо, медь) и их соединений. Общие способы получения металлов. Применение металлов в быту и технике.

Экспериментальные методы изучения веществ и их превращений: изучение коллекции «Металлы и сплавы», образцов неметаллов, решение экспериментальных задач, наблюдение и описание демонстрационных и лабораторных опытов (взаимодействие гидроксида алюминия с растворами кислот и щелочей, качественные реакции на катионы металлов).

Расчётные задачи.

Расчёты массы вещества или объёма газов по известному количеству вещества, массе или объёму одного из участвующих в реакции веществ, расчёты массы (объёма, количества вещества) продуктов реакции, если одно из веществ имеет примеси.

Химия и жизнь

Роль химии в обеспечении экологической, энергетической и пищевой безопасности, развитии медицины. Понятие о научных методах познания веществ и химических реакций.

Представления об общих научных принципах промышленного получения важнейших веществ.

Человек в мире веществ и материалов: важнейшие строительные материалы, конструкционные материалы, краски, стекло, керамика, материалы для электроники, наноматериалы, органические и минеральные удобрения.

Химия и здоровье человека: правила использования лекарственных препаратов, правила безопасного использования препаратов бытовой химии в повседневной жизни.

Межпредметные связи.

Реализация межпредметных связей при изучении общей и неорганической химии в 11 классе осуществляется через использование как общих естественно-научных понятий, так и понятий, являющихся системными для отдельных предметов естественно-научного цикла. Общие естественно-научные понятия: научный факт, гипотеза, закон, теория, анализ, синтез, классификация, периодичность, наблюдение, эксперимент, моделирование, измерение, явление.

Физика: материя, энергия, масса, атом, электрон, протон, нейтрон, ион, изотоп, радиоактивность, молекула, энергетический уровень, вещество, тело, объём, агрегатное состояние вещества, физические величины и единицы их измерения, скорость.

Биология: клетка, организм, экосистема, биосфера, макро- и микроэлементы, витамины, обмен веществ в организме.

География: минералы, горные породы, полезные ископаемые, топливо, ресурсы.

Технология: химическая промышленность, металлургия, производство строительных материалов, сельскохозяйственное производство, пищевая промышленность, фармацевтическая промышленность, производство косметических препаратов, производство конструкционных материалов, электронная промышленность, нанотехнологии.

ДОКУМЕНТ ПОДПИСАН ЭЛЕКТРОННОЙ ПОДПИСЬЮ

Сертификат: 01D1A98200E4AEEC944C7671788A14E897

Владелец: Барабанова Елена Анатольевна Действителен: с 01.08.2022 до 01.11.2023